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Excitation of electrons between parallel or near-parallel one-electron bands in simple

polyvalent metals constitutes a major source of the observed optical absorption.

Much of

the effect can be accounted for in a straightforward calculation of both real and imaginary
parts of the conductivity, which does not require the constant-matrix-element assumption.

In many cases, the magnitude and rounding of the absorption edges (singular in the absence

of scattering) are quite sensitive to the phenomenological relaxation times (and hence to
temperature) and to surface scattering. The sum rule for the (transverse) optical conductivity
is related to the Fourier components of the weak periodic potential, and an expression is

derived for the optical mass.
Al,

I. INTRODUCTION

* Structure in the observed optical absorption from
metals is normally related to singular behavior in
the joint density of states associated with the single-
particle bands., In polyvalent metals it is often
found that by plotting the bands along certain direc-
tions in k space, a pair of them may be substantial-
ly parallel. This is the situation, for example, in
Al,'"* and Ehrenreich et al.® observed that absorp-
tion edges of notable strength would go hand in hand
with a parallel-band spectrum, The behavior of the
absorption and the nature of the edge was partially
analyzed for photon energies in the neighborhood
of the threshold by Harrison,® who predicted (on
the basis of independently calculated pseudopoten-
tials) the position of absorption edges for a number
of metals,

For energies sufficiently close to the edge, the
oscillator strength required in Ref, 6 can be taken
as effectively constant, In a more recent numerical
calculation, Dresselhaus et al.” incorporated (among
other things) the explicit k dependence of the oscil-
lator strengths and obtained reasonable agreement
with new data on Al reported in the same paper.
Again, these data display prominent edges which
reflect the presence of parallel bands (as noted in
Ref. 6). 7

It is the purpose of this paper to demonstrate that
the dominant features in the absorption actually
follow quite straightforwardly from a simple weak-
potential (or pseudopotential) representation of the
important bands, We treat two cases: The first,
in which scattering is assumed absent, is outlined

The theory has been applied to study the optical properties of

in Sec. II and essentially reproduces for parallel-
band absorption the results of Golovashkin et al.?
We extend the analysis and derive an expression
for the absorption which may be of interest at higher
energies, To account for the broadening of the
single-particle bands, we use a relaxation-time
approximation result for the frequency-dependent
conductivity (Sec. III). It is easy to show that the
height of the edge is sensitive in this model to the
choice of relaxation time 7, an observation which
may account in some measure for the reported
variations in the experimental values for o (w).
For metals possessing one or more small band
gaps (~few 7 /7), it is apparent from the analysis
that the broadening may extend to low energies,
thereby adding to what is normally considered to
be Drude, or intraband, scattering. The theory
that follows is illustrated by explicitly evaluating
both the real and imaginary parts of the optical
conductivity o(w) for the cubic metal Al. (General-
ization to noncubic systems is straightforward. )
Determination of the surface and volume plasma
frequency for Al from the imaginary part of the
conductivity reveals good agreement with the re-
sults from electron energy-loss experiments. Fi-
nally, the contribution of the interband absorption
to the sum rule for Reo (w) is shown to lead to a
simple relation involving the Fourier components
(Ug) of the weak single-particle potential. It is
also possible to derive an explicit relation for the
optical effective mass in terms of the U,’s, whose
compatibility with the requirements of the sum rule
on the total (intraband and interband) absorption is
easily demonstrated.
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II. WEAK-POTENTIAL APPROXIMATION

The following analysis is restricted to metals
whose bands are largely parabolic and only weakly
perturbed by a small effective crystalline pseudo-
potential V. We assume that after the core states
have been projected out from the problem the sin-
gle-particle valence bands are described in a local
pseudopotential approximation. They are given by
the solution to the secular equation,

det {Hgg. - 6gg-€}=0 , (1)
where

Hggo=0ggs €k + Vigr

etg=(2/2m) G+ K7 @

and by choice V,=0.

Provided there are no other nearby bands, the
eigenvalues of (1) are given near zone planes by
the solutions of

w-e Uz 3)

1
o

Ug €pg— €

where, for the reciprocal-lattice vector K cor-
responding to the zone plane, we associate a “folded”
Fourier component which is given to second order
by

Ug=Vg+ 5 LB VR=R:

Kok €k~ K=K

It is the quantity Ug which is usually given in the
analysis of Fermi-surface dal;a, assuming (as is
frequently the case) that any k dependence is weak.
Corresponding to the reduced secular equation (3)

we may take wave functions
_0-1/2 ikeF o ol (k=R) ot
Ve =02 (cpe™T L cp_g et KT

) 4)

where for correct normalization in a volume 2 the
coefficients are readily shown to be given by®

2 Y 2 ,_1 Y
d-t(iogm). (g

(5)
with

n® G-KP-E n® KP-2%,K eg(1-2k,/K)
T 2m 22U, “2m 22U, 2Ug

(where we have resolved K into its components par-
allel and transverse to K; viz.,k =k, +k,). In the
same notation the energy of the upper (+) and lower
(-) bands is found from (3) to be

e=m2/2m) {R2+R2}+ | Uz | [|7| £ @ +v®YE]) . 6)

These are plotted'® in the extended-zone scheme in
Fig. 1 and clearly show the parallel nature of the
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FIG. 1. (a) Empty
lattice free-electron
bands in Al appropriate
to a section in a (110)
plane; (b) splitting of
degenerate bands and
appearance of parallel
bands due to a small
effective crystal poten-
tial,

bands when mapped in either the (111) or (200)
faces, or planes parallel to them (i.e., fixed &,
see Fig. 2).

When scattering is absent, the contribution to
the conductivity o (w) from interband absorption is
given to second order by

2 h:i .
O1B (w)= ae? 37;2’%‘;2) n'Zn)k‘ f(EnE) l<lpn’i V( d)ni:’> ’a
x b (eup— €8 -Tw) (")

with the restriction that the final states (n’k) are
empty.!! In the case of polyvalent metals, we con-
sider the absorption in two parts. First, there is
absorption between lower and upper bands as shown
in Fig. 2. All optical interband transitions are be-
tween states of constant interband energy difference
and are thus restricted to parallel bands. By plot-
ting the bands in the zone face, as in Fig. 2, this
parallelism is clearly displayed. We will follow
Harrison and refer to this allowed first-zone-sec-
ond-zone absorption as “parallel band” absorption.
Second, there is the familiar interband absorption
considered by Butcher and others? [see Fig. 3(a)]
which (although also parallel in the sense described
above) we will refer to as normal interband absorp-
tion. In either case we proceed to evaluate (7) by
converting the sum over k into the usual integral
and taking for the element dk '
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e(k)

N

(Zm(K2 2;«,.»())»:4\1,<

(2)

K28 Ky

FIG. 2. Form of the energy bands mapped in a plane
parallel to the (111) or (200) face. Vertical arrows
indicate parallel-band absorption.

dk=2nk,dk,dk, . (8)

Further, using (4) and (5) we find after a little
manipulation

o [V |9y =2i R @ +9?Y/2

where we have taken »n =2 for the upper band and
n=1 for the lower. Then (7) becomes

o5 (W)=0, Z—K (gr(;l_ﬁ> fdkn (2%, dk,) %%

x 8[2|Ux | (L+1A)2-w] (9)

where €, = (72/2m)K?, and® ¢,=(e?/a, %) (247)™*
For the case of parallel-band absorption opg
we write (9) as

€x Aot
Opg(w) g _K —~— dku 11 2

5 [2] Ur | Q4932 - 0]
where
BER= 0P - P

and where, for fixed %2, and Fermi energy €5, we
find from (6)

[REE=K® (2| Ug |/ex) (1 +7?)M2 .

Hence we have

Ze:K dk, 2| Uy [(1+9%)V?

Opgp (w)= O'a(aoK) K 1+,y2

x fle@s[2|Ux|(L+yHY2-m0]

and after making a simple change in variable x
=2| Uy | (1 +7%)/2 the integration is elementary,
giving

opp (@) =0, (agK) Uy /Tiw)?/[1 - Uy /Tiw)?]H 2 .

(10)

Equation (10) gives the absorption between parallel

AND K. STURM 3

bands in the neighborhood of a single-zone plane,
This result has previously been obtained by Golo-
vashkin et al.® and is discussed in the recent re-
view article by Motulevich,*

Parallel-band absorption [as given by (10)] ter-
minates for frequencies wy, where, neglecting
terms second order in (Uy/€;) [see Eq. (A3)],

Twg=€x (225 /K) - 1]

Note that (10) predicts an edge at 7w, when 7w,
= IZUK ] . For frequencies slightly in excess of w,
we have

)=0, (| 20, |2/ [ (o~ |20 |)V/2]
(11)

a form similar to that derived by Harrison.® 1t is
also worth pointing out explicitly that, away from
the edge, the absorption goes as w™2, a dependence
similar to that found in the Drude term. As an
example of the behavior of (10), we plot in Fig. 4
opp (w) for the (111) and (200) sets of planes in Al,
taking as values for Uj;; and Uy, the pseudopoten-
tial components that reproduce the measured Fermi
surface (Ref. 4).

We turn now to the normal (or Butcher-type) in-
terband absorption oy (w). From (9) we have

oyw)=0, Z_K %}z/dku [kf] Lew)

1492
x 6[2|Ug| (1 +v*) 2= fiw]

OpB (w

b

where now we have for 22 (at a given %,)
kJa.(ku):Kzg(kn) y

with

5= (B - Jﬂfi (R

K

€(k)
€lk),

X

k“
(a) (b)

FIG. 3. (a) Normal-interband absorption; (b) 7w, and
Iw, define the points in the frequency spectrum where
normal interband absorption begins and ends, respec-
tively.
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Then
€% 2ay 1
orN(w)=aa T dkng(ku) 1+7’2

8[2|Ug| (14922 = hw]

=0, EQ% IZUK’Z

(x)
fd" =00, ™

2U, (iw)
=0, (aoK) & Tiw (%K) [1- (2Uy /1w)?]M/2 -
(12)

12 5 (x - hw)

We show in the Appendix that
g (Mw) = (4€2)™! (hw + Iw,) (Bw, - iw)

where w; marks the frequency at which absorption

terminates in the two-band model [Fig. 3(b)]. Then
(12) becomes
(2U, /1w )?
oy (W) =0, (aoK) B _(ZUK/ﬁw)Z]llz
o (7w +Tiw o) (iw , = Tiw ) ’ (13)

47w €x

which, -apart from the factor [1 - (2Uy /7w)?]"*/2 is
similar in form to Butcher’s result. Contributions
from (13) join continuously onto the parallel-band
absorption given by (10) as shown schematically in
Fig. 5. Equations (10) and (13) give the contribu-
tions expected from absorption in the neighborhood

hw

04 €f

FIG. 4. Dashed curves show the parallel-band ab-
sorption in Al in the absence of scattering [Eq. (10)].
Solid curves give the individual contributions to the
absorption, namely, the Drude and parallel-band ab-
sorption. For both the same scattering rate was
assumed; T =0.6 x10"" sec. o is always measured
in units of 0,2apkp = 1.014 X 10% gec-!,
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FIG. 5. Combined parallel-band and normal-inter-
band absorption (collisionless case).

of a single-zone plane. To obtain the total absorp-
tion corresponding to the entire first zone we sim-
ply weight these results by the appropriate number
of planes®® bounding the zone, This procedure will
necessarily overlook some additional fine structure
in the absorption arising at points of higher sym-
metry (at W and K, for example, in Al). These
have considerably smallér phase-space and oscilla-
tor strengths.

III. COLLISION EFFECTS

Effects of interband scattering processes can be
included by introducing a semiphenomenological re-
laxation time 7 and replacing (7) by®

e?/ayh Tagk

o)== 3m%Q

“2(a s AL

1 1
X(ezg —eg-nw+i/7) ez - e +h(w+i/7)) '
(14)

Equation (14) is the two-band case of the more fa-
miliar expression

e?/ayh naoii

o'IB("‘)) = i w .2 Fn'n
kn’n
2\ 271
X [(6,,:; - e,,;)z—ﬁ(w +Z?) ] , (15)
where
Fn'n(E) Kd)nkfvfzpnk)lz

(e .E—e

is the oscillator strength and satisfies the f sum
rule

Z} o (K) = I'EFVE € (k) . (16)

Note that (14) reduces to (7) in the limit 1/7 -0
and with (15) is written in a form that suggests
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[through (16)] particle conservation during the colli-
sion process.!” Now we may write (14) as

_oglapK) €% dk,
(@)=~ T Ugl K
y kf(k.,)]( fw 2 1
K2 2U (1 +7%) 2] 1+4y?

1 1
17
X<(1+y2)’f2—z—ib +(1+y2)1/2+z+ib) , (17)

where we have put
J

2U,
Reopp(w) =0,(agK) —ﬁ—wg

Sb-GEy- )T

AND K. STURM 3
z2=nHw/2|Ugl, b=N/@27|Ug|), and b/z=1/wT.

Introducing y =1+ 2 we find for the real part of the
parallel-band contribution to o

Reops(w)=0,(aoK)| w/2Uy | /7

‘2

0
Xf
1

The integral here is straightforward to evaluate,
and we may write the result as [cf. Eq. (10)]

-4 -4
(wT)? }

2zb
2+ 2(0%2-2%)y + (2% +b%)

dy

1
G-D7 5 7 48

(wT)?
1+(wT)?

J (W),

(19)

The function J(w) tends quickly to unity for (Fw)®> (2Ux)?+(#/7)? [and over all, o(w)~w for small w)].

J (w) is defined by

__4zbp ., 1 (zz—bz
I w)= (2% +b%) tan t°+27r z%+b%
1/22-0% 2zb -1
+;(22+b2 sing 70 cos¢>> [tan
where

. 1+b2-2°
1L “f 2T ,
b=73 [w tan < bz > ]

pzz[(l +b2 —22)2+422b2]1/2 ,
zo=hwy/2|Ug| , to=(23=1)2 .

When we have (hw)? > (2U )2+ (17/7)%, (19) gives,
to high accuracy, the collisionless result (10). For
reasonable values of 7 the effect of collisions on the
normal interband absorption can be neglected en-
tirely, although they are straightforward to in-
clude. ®

By way of illustration, we compare in Figs. 6
the numerical results of Dresselhaus et al.” for
Reo(w) in Al with the predictions of (19). The val-
ue of 7 which seems to fit the principal (room-tem-
perature) interband absorption is 7=0. 5% 107 sec.
Note that part of the scattering rate 1/7 may be
due to surface scattering, a component that will be
present even at low temperatures. To include this
we use the results of Holstein and Dingle, '° namely,
that if the electrons scatter diffusely at the surface
the effective scattering rate is given by

1/7,=3@wg/c) (4me?/m)"? .

In the simplest approximation, we assume additivity
of bulk and surface scattering rates

12 + 2typ sing +p? )

2zb .
CoSP+ 7 52 sm¢) 1n< 12 — 2ty p sing +p?

Lo+p smcj)) +tan'1<t9 —p sing )] ’
pcoso

p coso

[

1/7=1/Tg+ 1/ Tou - (20)

(There is also some question about the correct value
of the bulk scattering rate. As Holstein and Gurzhi?®
pointed out, in the optical and infrared frequency
regime for temperatures T smaller than the Debye
temperature 6, Ty, is not simply the relaxation
time derived from the dc conductivity but is modi-
fied by quantum effects. Gurzhi gives an explicit
formula which relates the effective 7, to the dc
relaxation time 74 ,

1/ Toure= <P(T)(1/Tdc) y

where in the present situation ¢(7T') is given by

YL 'T\s [O/T vt
¢(T)~5<—T>+4<9)/0 vt

With 6=390 °K for Al, this leads to a slight en-
hancement of the bulk scattering rate by ¢(T)
=1.075; with 74,=0.75%10*sec, Eq. (20) yields

a value for 7 very near to 0.5x107'*.) In Fig. 6(a)
we compare the experimental result derived by a
Kramers-Kronig analysis from reflectivity data by
Beaglehole” with the theoretical result calculated
with (19) and 7=0.5x10"*, At liquid-nitrogen tem-
perature (77 °K), the enhancement factor becomes
@(T)=26/T=2. But this strong enhancement of the
bulk scattering rate is not particularly effective
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FIG. 6. (a) Solid line shows the parallel-band

interband absorption in Al as calculated from Eq. (19)
with T = 0.5 x 1014 sec. Crosses show the numerical
results of Dresselhaus et al. (Ref.7), using the same
parameters (Ujyy, Usy, T). (b) Solid curve shows
the experimental result of Beaglehole derived from
reflectivity data by a Kramers-Kronig analysis.
Dashed curve was calculated with (19) for 7 =10.5

x 10" sec,

since at this temperature surface scattering dom-
inates. In Fig. 7 we compare the theoretical ab-
sorption curve at liquid-nitrogen temperature
(T=T7°K, 7=1.135%10"! sec) with the correspond-
ing curve for room temperature (T'=300°K, 7=0.5
x107!* sec). It is quite apparent that the structure
arising from the interband absorption due to the
(111) gap is almost entirely concealed by the Drude
absorption. 2! In this energy range and at very low
temperatures, only faint structure has been ob-
served.

IV. INTERBAND CONTRIBUTION TO Imo (w) AND
DETERMINATION OF SURFACE AND VOLUME
PLASMA FREQUENCY

We now turn to the imaginary part of the conduc-
tivity, which is related to the polarizability a(w)

|
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o
|
12,51 \
|
|
‘.
N
|
\ \
100 “ (b)
1 I
| |
| |
|
|
|
7.5 !
|
1
| Beaglehole (Ref. 7)
N (1
\\ Equation (19)
5.0 \ I’ 7=05x 10" *sec
\J
2.5¢
I 1 Il .
[¢] 0.l 0.2 0.3 0.4  €F
by

a(w) = (1/w)Imo(w) .

Including collisions from the outset we find from
(14) and (17) (in the same notation) the parallel-
band contributions to Imo(w) to be

%20 dx

z
Imop, = 0,(agk) p Re I D

1 1 '
x <x-—z-—ib+x+z+ib> ’ 1)
The integral is again quite straightforward to eval-
uate and the result is also in terms of simple func-

tions. It is, however, more complex than (19).
We find

Imopy = 0,(agk)

2bmp \ 2

v

2 _1y1/2
+coso, [tan‘l((z" ) +pcos¢1> +tan“(

psing,

V2-2% J4bzp . 4.5 s 1(FP-
TV 2 {b2+22tan (&~ 1) +§<zz+b2

XIn 28— 1+2(22 - 1)!/2psing, + p*
22—-1-2(z2-1)2psing, + p°

L (lsin¢11n (5 = 1+2(z5 - 1)!/?pcosey+ o >

25=1-2(z%=1)"2pcosp, + o°

b2

(22— 1)1/2 - pcosqbl)]
p sing,

2zb .
cospy+ Zi sm(,‘bz)
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2o (. 2zb a (&g~ 1)"%+ psing, 4 (= 1)~ psing,
+—z-2—:52—<sm¢z mcos%) [tan( pCosP, >+tan< pcosh, >] , (22)

where

1M1 14882 11 LelP-z
oy[fra(M5575) | wmifor-ee ()

=[(L+ 02 = 2B 4 42%0%]1 /0
p

The essential features are more easily observed from the limiting case 1/7-0 (i.e., b-0). For hw< 7w,
(Fw,=21Ug|) we obtain

4 |Ugl
Imopy = 0,(ay K) _’I;_htf)_

2 -
x [[1 _ (h’O}/ZUK)z]l 7z tan™ ([1(?,“2%{;2/[;2)/}()2]11 /2) tan™'[ (7w,/2U)? - 1]1/2] , (23)

whereas for 7w > 7iw,=2|Ug| we obtain

Imopy = 0, (@, K) % L};—%—’-
x ( 1 L ' [(rwy/2Ug)2 = 1] 72 = [ (n0/2U)" = 1]12
2[(mw0/20 )7 = 1172 " | T(hw,/20)7 = 1)72+ ] (iw/2U5)7 — 11772

— tan[ (w,/2U)?% - 1] ”) .

(24)
The form of this result is displayed in Fig. 8 together with the curve derived with the inclusion of collisions.
The effect of collisions proves again to be quite pronounced (7=0.5 X10"* sec). In Fig. 9 we compare our
result with the experimental curve of Dusselhaus et al.” obtained by Kramers-Kronig analysis from the re-

Imopg

20

-5k

mj=t
[

[o] 0.1 0.2 0.3 F

FIG. 7. Dashed curve shows the predicted total
absorption in Al at liquid-nitrogen temperature. Solid .
curve shows the total absorption at room temperatures FIG. 8. Dashed curves display the parallel-band
where T = 0,5 x 10~ sec was assumed to fit the contribution to Imo(w). Solid curve shows the effect
experimental data (Ref. 7). of collisions on Imopg(w).
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flectivity. The crosses represent numerical results obtained by Dresselhaus et al.,"using the same param-
eters,

Starting from (14) the contributions to Imo(w) from “normal” bands are easily found to be

| U | 1 odx (x+ 29) (24 = %) 1 1 )
z 1Uxl )2y .
T 2€g Rf x3(xZ-1)172 {x—z—ib Y +z+ib) (25)

Although the general result (i.e., including the effect of collisions) can easily be obtained in term of simple
functions, we restrict ourselves here to the limit 1/7 -0 (i.e., b-0) and find for Zw < fiw,=2| Uyl

ImoX = 0,(a, K) =

1 | Ugl
Imof} = 0,(ay K) -1;—€'L
K

{ fiwgfiw, = (Aw)?

a4 Bw [(Fw,/2U,)% = 1]1/2 L hw
(mw)?[1 = (rw/2Ug)?]1 72 [tan (h’wl [1- (ﬁw/zUK)z]1/2> tan 1(—-—-—

[(rwy/2U )% - 1] 2 )]
fiw, [1- (w/2U,)?] 72

~ B [y /20 - 111724 B4 (/2007 - 1112
fiw, = B, o L, /20 = 1]1A (7wy/2U)? - 1]/
Z i (}iw/ZUx)Z]1 7 [tan 1([ 1(72&)/20 2E7%) n ({1 —o(hw/ZU )2]1/z>]
- i’iw;l; ﬁwg {tan'l[ (7“”1 /ZUK)Z _ 1]1 /2 _ tan'l[(iiwo /2 UK)Z _ 1]1 /2}}_ (26)

For 7w > 7w,

Imof =0 (aoK) 1l

€k
( rogho = (1) | Jig[(aw/2Ug)2 = 11172 - nol (i, /2U)° - 1172
2 (Y (72U Y — 11172 | Tow,[ (o /20U Y2 = 11172 + ] (i, /20 F = 117

wy (7w /2Ux)? = 11172+ fiw[ (1w, /2U )% = 1]1 /2

7wy (w/2U )% = 11777 = B[ (hw,/2U ) - 1]172

~ 280 [y /20,08 - 112+

B2 (/20,7 - 1112

w, = iwg
* 2ne[(w /20,7 - 1172

o 1n| L0202 1172 - [0, /20, = 11 [(0/2U,): = 1 (/20 = 1172
[(0/20,% =117+ [(a0, /205 P = 11777 [(nw/RU, = 1T77 = [(wo/20,) - 11172
- BT | G, /20 = 1112 - tan{ /20, - 1)) @7

In the frequency regime considered here the con-
tributions to Imo(w) from normal bands are rela-
tively small (see Fig. 10) and their addition to the

parallel-band contribution causes very little change.

Having now derived the dominant band-structure
contributions to the polarizability, we are able to
determine the plasma frequency. The well-known
longitudinal plasma mode has a frequency satisfying
Ree(w)=0. Ree(w) is related to the polarizability
or Imo(w) by

Ree(w)=1+4ra(w)=1+4mmo(w)/w .

We now assume that Imo(w) contains the following

[

contributions:
(i) the “free-electron” polarization (Drude
part)zs 24

4rap, = (4me?/moy) / w?;

(ii) the parallel-band contribution [Eq. (24)]
410Ly =47mopy /W ;

(iii) and the normal-band contribution [Eq. (27)]
araf (w)=4rImof /w .

Hence the plasma frequency wp (which is measured,
for example, in electron-energy-loss experiments)?
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FIG. 9. Solid line shows experimental result of

Dresselhaus et al. (Ref. 7) derived from reflectivity
data by a Kramers-Kronig analysis. Dashed curve
is calculated with Eq. (22) for T =0.5 x 10" sec.
Crosses represent the theoretical results of Dressel-
haus et al. (Ref. 7), using the same values for Uy,
UZOO’ and T.

is determined from
dmay, (wp) :v4‘”(°‘D+ Qpp + Ofp)=—1. (28)

From Fig. 11 we observe 7w,=15.3 eV for Al.
Together with the (volume) plasmon %w,, energy-
loss experiments also reveal a collective surface
excitation, the surface plasmon, whose excitation
energy 7w, (for a vacuum metal interface) in the
simplest approximation is determined by

Ree(wg,)=-1,
i.e.,
47Tatot(wsp) ==2. (29)

Again from Fig. 11 we obtain 7wy, =10.8 eV for Al
These values agree very well with the experimental
results by Powell and Swan® (fiw,,=10.3 eV and
7iw,=15. 3 eV) and provide a useful test of the in-
ternal consistency of the theory outlined above.

V. SUM RULES, OPTICAL MASS, AND DISCUSSION

We have pointed out that in the vicinity of points
of high symmetry in the zone we expect additional
interband absorption, an effect which is not included
in the weighted two-band model. Since the bands
quickly become nearly free-electron-like away
from these points, the phase space for these pro-
cesses is by no means as favorable as that available
for parallel-band absorption. Examination of the
typical magnitudes predicted by either Eq. (10) or
Eq. (19) suggests strongly that the interband ab-
sorption in polyvalent metals should be dominated
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FIG. 10. Imoy%, the normal-band contribution to

the imaginary part of the conductivity for the limiting
case 1/7 — 0. '

by opg, and any other structure will give rise to
only small corrections (as is apparenfly the case
in Al).

The physical reason behind the strong parallel-
band absorption can be seen in from Eq. (7). The
energy-conserving 8 function requires

€pg—€Enp= nw )

which clearly deﬁneg a surface of constant energy
difference, say S,.,(k). Now

Ek f(enf)’ <Z,[),,: £

_V"' wni')l 25(€n'i€"' €ni— fiw)

- ;%fdﬁﬂen;)lww VI 9| *6(e iz = €= 1),

30)
and instead of using (8) let us write

> o d€pp— €z = HW)
= 058) 9 ez et )]

It is now clear that if the matrix element

¢!V 11,z) | were to be set constant, then (30)
simply gives us a quantity proportional to the joint
density of states. As itis, the matrix element is,
in general, not constant but any singular behavior
in |Vile, g — €,z - Aw) | will still persist. At a zone
plane, the bands in the two-band model are both
parallel and flat; [Vi(€, ;= €z~ #w)| vanishes and
is not integrated out (as singular behavior with a
smaller phase space frequently is). The result is
an absorption edge and the scale of the parallel-
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FIG., 11, Individual contributions to the polarizability
a(w) and the total polarizability are plotted in the
high-frequency regime and used to derive Zwg, and
nw, for Al.

band interband absorption is significantly larger
than the normal interband absorption. 2

Scattering processes broaden the interband ab-
sorption edge. These may be due to impurities,
phonons, surface scattering, and even final-state
interactions. Much of the scattering is temperature
dependent and according to (19) the peaks in o should
rise with decreasing scattering rate (we find that,
approximately, o,,,~7). Notice that when the band
gap in the metal is small (say a few 7/7), the cor-
responding interband absorption may be significant
enough to interfere with the familiar Drude absorp-

tion. The latter is?’
ne*T/mopt 8 €/ (/1) _m
OD((.U)—- TFW = oa(ZaokF) T 1+ (wT)g mopt (31)
or
- 8(er Y 1/T _m_
70(0) = oy (aantr) 7 (75 LT (52)
for wt>1., The Drude contribution shown in Fig,

4 is plotted using (31). The optical mass m,,, can
be obtained as follows: The usual definition for a
cubic system is

m___ m
= 19715,
Mepy 12771 s

dSv; (33)
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(where FS stands for surface integration over the
Fermi surface), which may be rewritten

m m >
— =T33 d%kvie
mopt 12'"'3%;'2 / kR-R 5

where the integral is taken over the occupied states.
Using Eq. (6) we find

(34)

1 o B2 1 € B2 2y-372
3 Ve 23T 2 Q+N7",

where again (+) refers to the upper band and (-) to
the lower. Using (6) again the contributions from
the two bands taken together (after a little rear-
ranging) give

f_m__ 1K 12U o ax 1K
T 42, € x(x2-1)172 T 428,

z
UZ f‘ dx
x+2g) (2, = %) .
A xz(x?‘—l)“z( 0 (21 = %)

(35)

Before we evaluate (35) explicitly, we turn to the
sum rules. For the transverse conductivity we
have?®

j;’ dwReo(w) = S 1we?/m) . (36)

For the sake of simplicity we restrict ourselves to
the collisionless situation for which

° 1 nelm 1 _ne
dw(—éw + Reo; w):—n'—— 7
which we may write as
1 1 1 ® hdw m
4 2a4ky 0, ](: €F O (®)=1- Mopt (38)

From (10) the contribution for a single-zone plane
to the left-hand side of (38) is shown to be

w L K 21Ugl (% dx

Sk’ =% 2kp €p . xx®=-11R

=l£—g—l—lﬁﬁ—|[1 -s'm'1<ﬂgx—l)], (39)

42k, €, |2 7w,

and is the first term on the right-hand side of (35).
This accounts for parallel-band absorption., For
the remainder we find from (13)
1 K U: (B ax
3% 4er ), GE-pE W) E-),
20
0)

which is the second term on the right-hand side of
(35). We have demonstrated directly that the oscil-
lator strength removed from the Drude term appears
in the interband term, as required by the sum rule,
Note that S{? is essentially linear in U and domi-
nates boththe optical mass and the contribution to

Sl((z)
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TABLE I. Contribution of parallel-band Y% and
normal-interband 28(}) optical absorption to sum rule
[Egs. (39) and (41)].

754 58 Total
{111} 0.0975 0.0021 0.0996
{200} 0.2160 0.0370 0.2530

the sum rule, i.e.,

1 K |2U
(1y_=2 . 2 | 2¥YK
Sc°=8 "2k, | €5

To second order we may write (40) as

1 K U:[ w 3w W
et s ratll v RO
Equations (39) and (41) have been applied to Al with
the result shown in Table I. It is clear that to
0O(U2) the lower bands exhaust about one-third of
the electrons contributing.

To the same order in the potential we find for the
optical mass

m_ 1 K Ul ([7_ ._1<20)} |Ug |
1 mm—§2 2kr €r {[2 S\, It "2e
o L0 895 10 &ﬂ (42)

2w, 2w, w, ’

which, for Al, gives mg,,=1.55m.(This value is in
good agreement with Brust’s recent computer cal-
culations® of the optical properties of Al in which
an optical mass m,,,=1.45 is found.) The Drude
contribution shown in Fig. 4 is plotted using a val-
ue of mg, =1.55m. Notethatthe relative contribu-
tions of Drude and interband absorption are given
for 7w > |2U,| by combining (32) and (10),

op(w) 22k € /Ty m 43)
Opg(W) T K Ux Ugp mgy

This shows that although for a small band gap €5/
Uy may be large, the resulting factor may be en-
tirely nullified by (%/7)/Ug. The overlapping of
interband and Drude absorption may lead to diffi-
culties in assigning optical effective masses if the
former is assumed absent. [In addition many poly-
valent metals possess lines of band contact* which
happen to cut their Fermi surfaces, thereby per-
mitting interband absorption (with ever decreasing
phase space) down to the near static limit. ]

The analysis given above is applicable to those
metals with nearly free-electron-like bands. It is
clear from (43), and (10) or (19), that in metals
with substantial band gaps the parallel-band absorp-
tion is large and easily identifiable and should
therefore be a useful guide to the approximate de-
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termination of the Ug.3® Note that the excitation of
the electrons to and from assumed single-particle
states involves (in this problem) energy differences
amounting to several eV. It follows that energy
dependence of the pseudopotential may not be a
negligible effect and should be included if the theory
is extended. To use (19) as a basis for extracting
information on the Fourier components of the po-
tential, it is clearly advantageous to work in a
regime where the Drude absorption is compara-
tively weak. Furthermore, by comparing (for a
given metal) the variation of absorption peak-
heights with, say, impurity content, it should be
possible to infer information on the energy depen-
dence of the interband-scattering rate. Finally,
many-body effects seem unlikely to be important
at energies away from the edge (but less than the
plasmon energy). Since scattering is exceedingly
important af the edge,® it is at least conceivable
that effects having their origin beyond the single-
particle picture may be of some interest here,
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APPENDIX

Let 7w, be the energy at which parallel-band ab-
sorption ceases and normal interband absorption
commences. Let 7w, be the energy at which normal
interband absorption ceases (see Fig. 3).

Now the value of k&, corresponding to the first
case is given by the solution to

",ZZ
o K-k -€p Uk
=0, (A1)
ﬁz
Us o F1= €
and of the second by — %, , (E, >0), where
2 -
o ki-€p Uy
7 = =0
UK %(K—ku)z"eﬁ‘
(A2)

Since the energy-conserving 6 function requires

_1 . (2Ug\2 '/
2 Y T

then the frequencies corresponding to 2, and - E,,
are given by the roots of [for either (A1) or (A2)]
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The roots are
(A3)
(A4)

fiwg=2(exep+ U2 €y ,
hwy=2(exep+U®) 2 4ey ,

with the consequence that
fiwy — Twy=2¢€g .

Now we have

o) -S2-(%) - 1

_ 2y1/2
(% . [yl = (1+¥H12],

where
’)’:(GK/ZIUKI)U-_ Zk"/K) ’
21U 11+ 2= 1w .
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frw %2}1/22 _
- G oo

[
It follows that

kn/K= %[1 - (ZUK/GK)V] ’

and accordingly,

.
glnw) =SE _ ;;.[1 +€Q&) 72] LUkl (1+92)V2

1 fiw \*
=Z€—K§{4EKEF— €% - (4U§{)[(—2—6;> - 1]+2h’w eK}

1
=:1—€E (Fw + Awy) (Aw, = fiw)

using (A3) and (A4).
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The electron gas at metallic densities is studied by means of a quadratic boson Hamiltonian
which includes the direct and exchange processes among the electrons but neglects the scat-
tering of electron-hole pairs. This Hamiltonian is further separated into two independent
parts which describe the singlet-and triplet states of the electron-hole pairs. These parts
are diagonalized in an approximation in which the exchange interaction is treated on the aver-
age. A dielectric function for all momentum transfers is thereby obtained. The correlation
energy is the sum of the ground-state energies of the singlet and triplet Hamiltonians. Its
value, calculated for the metallic density range (»¢=1-6), is found to be about two-thirds of
that in the random-phase approximation. It is consequently numerically smaller than most
other estimates. The triplet contribution is very considerable, The triplet ground state is

predicted to be unstable for »¢>9. 4.

I. INTRODUCTION

The correlation energy of an electron gas was
defined by Wigner! to be the difference between
the true ground-state energy and that calculated
in the Hartree-Fock approximation, It is a func-
tion of the specific interparticle separation », the
Bohr radius g, being taken as unity. In the high-
density (r,<< 1) and low-density (7,> 1) limits, its
value has been calculated very accurately by Gell-
Mann and Brueckner? and Coldwell-Horsfall and
Maradudin,  respectively. If we regard the elec-
tron gas as’a model of real metals, we must con-
sider its behavior in the intermediate-density re-
gion 1<7,<6. A number of estimates of the cor-
relation energy at metallic densities have been
made by means of interpolation methods. Wigner
and Carr and Maradudin® have interpolated be-

4

tween the high- and low—density limits. Another
method is to interpolate between the contributions
from processes of high- and low-momentum trans-
fers, as was done by Hubbard® and Noziéres and
Pines.” There is also a variational calculation by
Gaskell.® These investigations and many others
have indicated that the properties of an electron
gas even at metallic densities aré-very similar

to those at high density.

It has been shown by Sawada® that the high-den-
sity results of Gell-Mann and Brueckner can be
obtained from a Hamiltonian quadratic in quasiboson
operators. These operators describe the creation
and annihilation of electron-hole pairs and approxi-
mately obey Bose commutation rules at high den-
sity. The Sawada Hamiltonian takes into account
the direct interaction between electrons in the
singlet state, and is equivalent to the random-



